Сети которые подключаются к интернету какие используют протоколы

Различие между HTTP и HTTPS

Большинство людей не знают о различиях между http:// и https://, поскольку оба они почти визуально схожи. Знание различий между ними имеет первостепенное значение для поддержания безопасного и эффективного сайта, способного защитить информацию и данные. Браузеры были разработаны таким образом, что строка URL-адреса будет выделять буквы S в HTTPS другим цветом, чтобы пользователи могли их заметить.

Вот некоторые очевидные различия между ними:

HTTP — В настоящее время шифрование данных не осуществляется.
Каждая URL-ссылка использует HTTP в качестве основного типа протокола передачи гипертекста. Учитывая это, HTTP уподобляется системе, которая не принадлежит ни одному государству. Это позволяет включить любое соединение по требованию.
По сути, этот протокол является протоколом прикладного уровня. Это означает, что он больше фокусируется на информации, которая предоставляется пользователю, но не на том, как эти данные передаются от узла-источника к получателю

Это может нанести ущерб, так как это средство доставки может быть легко перехвачено и отслежено злоумышленниками сторонних пользователей (обычно известными как хакеры).

HTTPS — Данные зашифрованы.
По сравнению с HTTP, информация о пользователе, такая как номера кредитных карт и другие формы важной личной информации, зашифрована. Это предотвращает доступ вредоносных пользователей третьих сторон к этим формам конфиденциальных данных в любой форме.
При более безопасной сети пользователи будут иметь более высокий уровень доверия при использовании сайта, поскольку их данные зашифрованы, а пользователям со злым умыслом будет трудно взломать свои данные.

Статистика показывает, что 84% покупателей покидают веб-сайты после того, как узнают, что веб-сайт передает данные по незащищенному каналу.
29% пользователей осознают разницу между HTTP и HTTPS и активно ищут эту разницу в адресной строке.
Являясь новой формой технологии, HTTPS все еще имеет несколько особенностей, которые до сих пор считаются экспериментальными

В связи с этим более старые типы браузеров будут испытывать трудности с адаптацией к этим веб-сайтам.
По сравнению с простой настройкой сайта с HTTP, переход на HTTPS требует от пользователя прохождения нескольких юридических процедур для получения SSL-сертификата. Это означает, что владельцы страниц и сайтов вынуждены тратить деньги. Получение SSL-сертификатов является платной услугой от центра сертификации.
Благодаря процессу кодирования сервер направляет энергию и время обработки на кодирование информации до того, как она будет передана.

Резюме технических различий между HTTP и HTTPS:

  • HTTP небезопасен, в то время как HTTPS является безопасным протоколом.
  • HTTP использует TCP порт 80, в то время как HTTPS использует TCP порт 4433.
  • HTTP работает на прикладном уровне, в то время как HTTPS работает на транспортном уровне безопасности (TLS).
  • Для HTTP не требуется сертификат SSL, но HTTPS требует, чтобы сертификат SSL был подписан и внедрен центром сертификации (ЦС).
  • HTTP не обязательно требует подтверждения домена, в то время как HTTPS в обязательном порядке требует подтверждения домена и определенных сертификатов, которые требуют юридического оформления.
  • Во время зашифровки данных непосредственно перед их передачей для протокола HTTPS шифрование данных в HTTP не выполняется.
  • HTTPS является расширением протокола HTTP. В этом случае он работает совместно с другим протоколом, а именно Secure Sockets Layer (SSL) для безопасной передачи данных.
  • Как HTTP, так и HTTPS не обращаются к данным, которые будут передаваться по назначению. И наоборот, SSL не имеет никакого отношения к тому, как будут выглядеть данные.

Пользователи часто ошибочно полагают, что HTTPS и SSL являются одними и теми же протоколами. HTTPS безопасен, так как использует SSL для передачи данных. В настоящее время TSL медленно сворачивает использование SSL, поскольку это еще более безопасный способ шифрования данных, который будет отправляться.

Уровни OSI

Для наглядности процесс работы сети принято разделять на 7 уровней, на каждом из которых работает своя группа протоколов.

Для выполнения разных задач имеется несколько протоколов, которые занимаются обслуживанием систем, например, стек TCP/IP. Давайте здесь внимательно посмотрим на то, каким образом информация с одного компьютера отправляется по локальной сети на другой комп.

Задачи компьютера ОТПРАВИТЕЛЯ:

  • Взять данные из приложения
  • Разбить их на мелкие пакеты, если большой объем
  • Подготовить к передаче, то есть указать маршрут следования, зашифровать и перекодировать в сетевой формат.

Задачи компьютера ПОЛУЧАТЕЛЯ:

  • Принять пакеты данных
  • Удалить из него служебную информацию
  • Скопировать данные в буфер
  • После полного приема всех пакетов сформаровать из них исходный блок данных
  • Отдать его приложению

Для того, чтобы верно произвести все эти операции и нужен единый свод правил, то есть эталонная модель OSI.

Вернемся у к уровням OSI. Их принято отсчитывать в обратном порядке и в верхней части таблицы располагаются сетевые приложения, а в нижней — физическая среда передачи информации. По мере того, как данные от компьютера спускаются вниз непосредственно к сетевому кабелю, протоколы, работающие на разных уровнях, постепенно их преобразовывают, подготавливая к физической передаче.

Разберем их подробнее.

6. Уровень представления (Presentation Layer)

Переводит эти данные на единый универсальный язык. Дело в том, что каждый компьютерный процессор имеет собственный формат обработки данных, но в сеть они должны попасть в 1 универсальном формате — именно этим и занимается уровень представления.

Ваше мнение — WiFi вреден?

Да
22.96%

Нет
77.04%

Проголосовало: 30958

5. Сеансовый уровень (Session Layer)

У него много задач.

  1. Установить сеанс связи с получателем. ПО предупреждает компьютер-получатель о том, что сейчас ему будут отправлены данные.
  2. Здесь же происходит распознавание имен и защита:
    • идентификация — распознавание имен
    • аутентификация — проверка по паролю
    • регистрация — присвоение полномочий
  3. Реализация того, какая из сторон осуществляет передачу информации и как долго это будет происходить.
  4. Расстановка контрольных точек в общем потоке данных для того, чтобы в случае потери какой-то части легко было установить, какая именно часть потеряна и следует отправить повторно.
  5. Сегментация — разбивка большого блока на маленькие пакеты.

4. Транспортный уровень (Transport Layer)

Обеспечивает приложениям необходимую степень защиты при доставке сообщений. Имеется две группы протоколов:

  • Протоколы, которые ориентированы на соединение — они отслеживают доставку данных и при необходимости запрашивают повторную отправку при неудаче. Это TCP — протокол контроля передачи информации.
  • Не ориентированные на соединение (UDP) — они просто отправляют блоки и дальше не следят за их доставкой.

3. Сетевой уровень (Network Layer)

Обеспечивает сквозную передачу пакета, рассчитывая его маршрут. На этом уровне в пакетах ко всей предыдущей динформации, сформированной другими уровнями, добавляются IP адреса отправителя и получателя. Именно с этого момент пакет данных называется собственно ПАКЕТОМ, у которого есть IP адреса (IP протокол — это протокол межсетевого взаимодействия).

2. Канальный уровень (Data Link Layer)

Здесь происходит передача пакета в пределах одного кабеля, то есть одной локальной сети. Он работает только до пограничного маршрутизатора одной локальной сети. К полученному пакету канальный уровень добавляет свой заголовок — MAC адреса отправителя и получателя и в таком виде блок данных уже называется КАДРОМ.

При передачи за пределы одной локальной сети пакету присваивается MAC не хоста (компьютера), а маршрутизатора другой сети. Отсюда как раз появляется вопрос серых и белых IP, о которых шла речб в статье, на которую была выше дана ссылка. Серый — это адрес внутри одной локальной сети, который не используетс яза ее пределами. Белый — уникальный адрес во всем глобальном интернете.

При поступлении пакета на пограничный роутер IP пакета подменяется на IP этого роутера и вся локальная сеть выходит в глобальную, то есть интернет, под одним единственным IP адресом. Если адрес белый, то часть данных с IP адресом не изменяется.

1. Физический уровень (Transport layer)

Отвечает за преобразование двоичной информации в физический сигнал, который отправляется в физический канал передачи данных. Если это кабель, то сигнал электрический, если оптоволоконная сеть, то в оптический сигнал. Осуществляется это преобразование при помощи сетевого адаптера.

Интернет-уровень

Internetworking требует отправки данных из исходной сети в сеть назначения. Этот процесс называется маршрутизацией и поддерживается адресацией хоста и идентификацией с использованием иерархической системы IP-адресации . Интернет слой обеспечивает ненадежные датаграммы средство передачи между узлами , расположенных на потенциально различные IP — сетях посредством пересылки дейтаграммы соответствующего маршрутизатора следующего перехода для дальнейшей ретрансляции к месту назначения. Интернет-уровень отвечает за отправку пакетов по потенциально нескольким сетям. Благодаря этой функциональности уровень Интернета делает возможным межсетевое взаимодействие, взаимодействие различных IP-сетей и, по сути, устанавливает Интернет.

Интернет-уровень не делает различий между различными протоколами транспортного уровня. IP передает данные для множества различных протоколов верхнего уровня . Каждый из этих протоколов идентифицируется уникальным номером протокола : например, Internet Control Message Protocol (ICMP) и Internet Group Management Protocol (IGMP) — это протоколы 1 и 2, соответственно.

Интернет-протокол является основным компонентом Интернет-уровня, и он определяет две системы адресации для идентификации сетевых узлов и определения их местоположения в сети. Исходная адресная система ARPANET и ее преемника, Интернет, — это Интернет-протокол версии 4 (IPv4). Он использует 32-битный IP-адрес и поэтому способен идентифицировать примерно четыре миллиарда хостов. Это ограничение было снято в 1998 году путем стандартизации протокола Интернета версии 6 (IPv6), в котором используются 128-битные адреса. Производственные реализации IPv6 появились примерно в 2006 году.

Комбинированное подключение

Способ уже почти нигде в мире не используется, за исключением Российской Федерации. Этот тип относится к сложным и подразумевает двойной доступ «Dual access» с комбинированием соединений через локальную и частную сети.

При этом обеспечивается одновременный доступ к внешней глобальной и внутренним каналам поставщика интернета (интерактивное телевидение, пиринги и т.п.).

Также применяются и разные варианты с использованием локального и VPN подключений, например :

  1. Доступ в глобальную сеть осуществляется с применением протокола PPPoE и адрес для работы в сети LAN присваивается в автоматическом режиме, а выход во внешку производится с динамической раздачей маршрутов.
  2. Маршруты и адрес для подключения посредством PPPoE организуются с использованием статически заданных параметров.
  3. Выход в интернет осуществляется с применением PPTP, при этом внутренний IP присваивается в автоматическом режиме, а посредством DHCP option раздаются маршруты, которые могут указываться самостоятельно либо выдаваться автоматически.
  4. Этот вариант аналогичен предыдущему 3-му типу, но адреса статические, то есть задаются в ручном режиме.

Вышеуказанные комбинации могут использоваться в вариантах предоставления интернета через L2TP.

Какими бывают протоколы Интернета

На сегодняшний день известно несколько разновидностей протоколов Интернета. Они имеют следующие обозначения:

  • HTTP;
  • DNS;
  • ICMP;
  • FTP;
  • UDP;
  • TCP/IP — название протокола, являющегося основным для интернет-сетей.

Обратите внимание! Различия между этими решениями кроются в уровнях назначения

И здесь можно разделить решения по нескольким веткам:

  • физические уровни. Предполагают, что соединение создаётся при помощи витой пары, оптических волокон;
  • ARP-уровень с драйверами устройств;
  • сетевой уровень со стандартными ICMP, IP;
  • транспортный уровень — UDP и TCP;
  • прикладной. Сюда входят стандартные протоколы сети Интернет типа NFS, DNS, FTP, HTTP.

ISO/OSI — система стандартизации, которая используется абсолютно для всех решений. Благодаря этому не возникает сбоев у разнообразных платформ, даже если используются разные операционные системы, оборудование поставляют разные производители. Сейчас такие детали практически не имеют значения.

Обратите внимание! Для функционирования Интернета используется протокол каждого уровня

Какими бывают протоколы Интернета

На сегодняшний день известно несколько разновидностей протоколов Интернета. Они имеют следующие обозначения:

  • HTTP;
  • DNS;
  • ICMP;
  • FTP;
  • UDP;
  • TCP/IP — название протокола, являющегося основным для интернет-сетей.

Обратите внимание! Различия между этими решениями кроются в уровнях назначения

И здесь можно разделить решения по нескольким веткам:

  • физические уровни. Предполагают, что соединение создаётся при помощи витой пары, оптических волокон;
  • ARP-уровень с драйверами устройств;
  • сетевой уровень со стандартными ICMP, IP;
  • транспортный уровень — UDP и TCP;
  • прикладной. Сюда входят стандартные протоколы сети Интернет типа NFS, DNS, FTP, HTTP.

ISO/OSI — система стандартизации, которая используется абсолютно для всех решений. Благодаря этому не возникает сбоев у разнообразных платформ, даже если используются разные операционные системы, оборудование поставляют разные производители. Сейчас такие детали практически не имеют значения.

Обратите внимание! Для функционирования Интернета используется протокол каждого уровня

Реализации

Набор Интернет-протоколов не предполагает наличия какой-либо конкретной аппаратной или программной среды. Для этого требуется только наличие аппаратного и программного уровня, способного отправлять и получать пакеты в компьютерной сети. В результате пакет был реализован практически на каждой вычислительной платформе. Минимальная реализация TCP / IP включает в себя следующее: Интернет-протокол (IP), протокол разрешения адресов (ARP), протокол управляющих сообщений Интернета (ICMP), протокол управления передачей (TCP), протокол дейтаграмм пользователя (UDP) и управление группами Интернета. Протокол (IGMP). В дополнение к IP, ICMP, TCP, UDP, Интернет-протокол версии 6 требует Neighbor Discovery Protocol (NDP), ICMPv6 и Multicast Listener Discovery (MLD) и часто сопровождается интегрированным уровнем безопасности IPSec .

Прикладных программистов обычно интересуют только интерфейсы на прикладном уровне и часто также на транспортном уровне, в то время как нижележащие уровни представляют собой услуги, предоставляемые стеком TCP / IP в операционной системе. Большинство реализаций IP доступны программистам через сокеты и API .

Уникальные реализации включают облегченный TCP / IP , стек с открытым исходным кодом , разработанный для встраиваемых систем , и KA9Q NOS , стек и связанные протоколы для любительских систем пакетной радиосвязи и персональных компьютеров, подключенных через последовательные линии.

Прошивка микроконтроллера в сетевом адаптере обычно решает проблемы со связью, поддерживаемые программным обеспечением драйвера в операционной системе. Непрограммируемая аналоговая и цифровая электроника обычно отвечает за физические компоненты ниже канального уровня, обычно используя набор микросхем интегральной схемы для конкретного приложения (ASIC) для каждого сетевого интерфейса или другого физического стандарта. Высокопроизводительные маршрутизаторы в значительной степени основаны на быстрой непрограммируемой цифровой электронике, выполняющей переключение на уровне каналов.

Стандраты и группы

Некоторые протоколы образуют отдельные группы, с подгруппами в которые входит ряд непосредственно протоколов. Всем известный TCP/IP включает в себя десятки протоколов разного уровня в том числе для работы оборудования, некоторые из них вы наверняка слышали: DNS, HTTPS, IPv6, POP3 и много других. Сюда же входит RTSP (Потоковый протокол реального времени (англ. real time streaming protocol, сокр

RTSP) который используется для управления потоками медиаданных, в нем включены методы play, pause, record и прочие что очень важно в видеонаблюдении, и в том числе используется в программах клиентах: Skype, Медиапроигрыватель VLC и т.д

Библиография

  • Дуглас Э. Комер . Межсетевое взаимодействие с TCP / IP — принципы, протоколы и архитектура . ISBN  86-7991-142-9
  • Джозеф Г. Дэвис и Томас Ф. Ли. Протоколы и службы TCP / IP Microsoft Windows Server 2003 . ISBN  0-7356-1291-9
  • Форузан, Бехруз А. (2003). Пакет протоколов TCP / IP (2-е изд.). Макгроу-Хилл. ISBN 978-0-07-246060-5.
  • Крейг Хант Сетевое администрирование TCP / IP . О’Рейли (1998) ISBN  1-56592-322-7
  • Мафер, Томас А. (1999). Основы интеллектуальной собственности . Прентис Холл. ISBN 978-0-13-975483-8.
  • Ян Маклин. Windows (R) 2000 TCP / IP Черная книга . ISBN  1-57610-687-X
  • Ajit Mungale Pro .NET 1.1 Сетевое программирование . ISBN  1-59059-345-6
  • В. Ричард Стивенс . Иллюстрированный TCP / IP, Том 1: Протоколы . ISBN  0-201-63346-9
  • В. Ричард Стивенс и Гэри Р. Райт. Иллюстрированный TCP / IP, Том 2: Реализация . ISBN  0-201-63354-X
  • В. Ричард Стивенс . Иллюстрированный TCP / IP, Том 3: TCP для транзакций , HTTP , NNTP и протоколы домена UNIX . ISBN  0-201-63495-3
  • Эндрю С. Таненбаум . Компьютерные сети . ISBN  0-13-066102-3

Уровень приложения

Прикладной уровень включает в себя протоколы , используемые в большинстве приложений для предоставления услуг пользователя или обмена данных приложений за сетевые соединения , установленных протоколами нижнего уровня. Это может включать некоторые базовые службы поддержки сети, такие как протоколы маршрутизации и конфигурация хоста. Примеры протоколов прикладного уровня включают протокол передачи гипертекста (HTTP), протокол передачи файлов (FTP), простой протокол передачи почты (SMTP) и протокол динамической конфигурации хоста (DHCP). Данные, закодированные в соответствии с протоколами прикладного уровня, инкапсулируются в единицы протокола транспортного уровня (такие как потоки TCP или дейтаграммы UDP), которые, в свою очередь, используют протоколы нижнего уровня для фактической передачи данных.

Модель TCP / IP не учитывает специфику форматирования и представления данных и не определяет дополнительные уровни между прикладным и транспортным уровнями, как в модели OSI (уровни представления и сеанса). Согласно модели TCP / IP, такие функции являются областью библиотек и интерфейсов прикладного программирования . Прикладной уровень в модели TCP / IP часто сравнивают с комбинацией пятого (сеансовый), шестого (представление) и седьмого (приложения) уровней модели OSI.

Протоколы прикладного уровня часто связаны с конкретными клиент-серверными приложениями, а общие службы имеют хорошо известные номера портов, зарезервированные Internet Assigned Numbers Authority (IANA). Например, протокол передачи гипертекста использует порт сервера 80, а Telnet использует порт сервера 23. Клиенты, подключающиеся к службе, обычно используют эфемерные порты , т. Е. Номера портов , назначаемые только на время транзакции случайным образом или из определенного диапазона, настроенного в заявление.

На уровне приложений модель TCP / IP различает пользовательские протоколы и протоколы поддержки . Протоколы поддержки предоставляют услуги системе сетевой инфраструктуры. Пользовательские протоколы используются для реальных пользовательских приложений. Например, FTP — это протокол пользователя, а DNS — протокол поддержки.

Хотя приложения обычно осведомлены о ключевых качествах соединения транспортного уровня, таких как IP-адреса конечных точек и номера портов, протоколы прикладного уровня обычно рассматривают протоколы транспортного уровня (и более низких уровней) как черные ящики, которые обеспечивают стабильное сетевое соединение, через которое осуществляется обмен данными. . Транспортный уровень и уровни нижнего уровня не заботятся о специфике протоколов прикладного уровня. Маршрутизаторы и коммутаторы обычно не проверяют инкапсулированный трафик, а просто предоставляют для него канал. Однако некоторые брандмауэры и приложения для регулирования полосы пропускания используют глубокую проверку пакетов для интерпретации данных приложения. Примером может служить протокол резервирования ресурсов (RSVP). Иногда необходимо учитывать полезную нагрузку приложения.

О средствах настройки, проверки

В операционной системе Windows настройка протокола становится одной из самых простых операций. Достаточно зайти в меню с параметрами Сети, где выбирается соответствующий пункт. Раньше решение вопроса было более простым. Сейчас пользователи выбирают между двумя вариантами подключения:

  • IPv6;
  • IPv4.

Обратите внимание! iPv4 — вариант стандартной настройки для большинства ситуаций. IPv6 — новая версия протокола, которая до сих пор остаётся невостребованной

Доступ к состоянию сети с помощью системного трея помогут провести проверку в случае необходимости. Значок на панели сообщит пользователю о том, доступна сеть или нет. Определение текущего статуса не доставляет проблем.

Общие сведения

Сетевой протокол – это набор правил, который позволяет обмениваться данными нескольким устройствам связанным сетью. Ни одно удалённое подключение не может обойтись без работы протоколов, без них система просто не знала бы как взаимодействовать и общаться. Если обобщать, то можно сказать что это семейство стандартов, предписывающее методы общения, а также спецификации оборудования.

Для описания и деления протоколов используется семиуровневая модель OSI (Open System Interconnection — взаимодействие открытых систем, ВОС). В этой классификации описываются все формы взаимодействия необходимые для полноценной работы оборудования:
• Приложение;
• Представление;
• Сеанс;
• Транспорт;
• Сеть;
• Передача данных;
• Физическое воплощение.

Что такое протокол Интернета: понятие и история создания

APRANET — сеть, когда-то созданная в США. Считается, что именно она стала прародительницей всего Интернета вообще. Эта сеть одно время даже подчинялась военным ведомствам. Суть технологии в том, что применялась пакетная технология передачи данных. То есть информация передавалась несколькими порциями. Потом их можно было воспроизвести, интерпретировать с помощью другого терминала.

Значит и тогда, и сейчас протокол Интернета — это некие правила, связанные с передачей данных между разными устройствами. Это своеобразные унифицированные настройки, благодаря которым друг с другом смогли соединяться пользователи, находящиеся в разных уголках мира. Одновременный доступ к одному и тому же ресурсу тоже стал возможным. Протоколы сети Интернет начали развиваться.

Сравнение уровней TCP / IP и OSI

Три верхних уровня в модели OSI, т. Е. Прикладной уровень, уровень представления и уровень сеанса, не различаются отдельно в модели TCP / IP, которая имеет только прикладной уровень над транспортным уровнем. Хотя некоторые приложения с чистым протоколом OSI, такие как X.400 , также комбинируют их, нет требования, чтобы стек протоколов TCP / IP налагал монолитную архитектуру над транспортным уровнем. Например, протокол приложения NFS работает поверх протокола представления внешних данных (XDR), который, в свою очередь, работает через протокол, называемый удаленным вызовом процедур (RPC). RPC обеспечивает надежную передачу записей, поэтому может безопасно использовать максимально эффективный протокол UDP.

Различные авторы интерпретировали модель TCP / IP по-разному и расходятся во мнениях относительно того, покрывает ли канальный уровень или какой-либо аспект модели TCP / IP проблемы уровня 1 OSI ( физического уровня ), или же TCP / IP предполагает наличие аппаратного уровня ниже уровня канальный уровень.

Несколько авторов попытались включить уровни 1 и 2 модели OSI в модель TCP / IP, поскольку они обычно упоминаются в современных стандартах (например, IEEE и ITU ). Это часто приводит к модели с пятью уровнями, где уровень канала или уровень доступа к сети разделен на уровни 1 и 2 модели OSI.

Усилия по разработке протокола IETF не связаны со строгим распределением уровней. Некоторые из его протоколов могут не полностью вписываться в модель OSI, хотя RFC иногда ссылаются на него и часто используют старые номера уровней OSI. IETF неоднократно заявлял, что разработка интернет-протокола и архитектуры не предназначена для соответствия OSI. RFC 3439, относящийся к архитектуре Интернета, содержит раздел, озаглавленный: «Многослойность считается вредной».

Например, уровни сеанса и представления пакета OSI считаются включенными в прикладной уровень пакета TCP / IP. Функциональность сеансового уровня можно найти в таких протоколах, как HTTP и SMTP, и более очевидна в таких протоколах, как Telnet и Session Initiation Protocol (SIP). Функциональность сеансового уровня также реализуется с помощью нумерации портов протоколов TCP и UDP, которые включены в транспортный уровень пакета TCP / IP. Функции уровня представления реализованы в приложениях TCP / IP со стандартом MIME при обмене данными.

Протоколы IETF могут быть рекурсивно инкапсулированы, что демонстрируется протоколами туннелирования, такими как Generic Routing Encapsulation (GRE). GRE использует тот же механизм, который OSI использует для туннелирования на сетевом уровне.

Уровень приложения

Прикладной уровень включает в себя протоколы , используемые в большинстве приложений для предоставления услуг пользователя или обмена данных приложений за сетевые соединения , установленных протоколами нижнего уровня. Это может включать некоторые базовые службы поддержки сети, такие как протоколы маршрутизации и конфигурация хоста. Примеры протоколов прикладного уровня включают протокол передачи гипертекста (HTTP), протокол передачи файлов (FTP), простой протокол передачи почты (SMTP) и протокол динамической конфигурации хоста (DHCP). Данные, закодированные в соответствии с протоколами прикладного уровня, инкапсулируются в единицы протокола транспортного уровня (такие как потоки TCP или дейтаграммы UDP), которые, в свою очередь, используют протоколы нижнего уровня для фактической передачи данных.

Модель TCP / IP не учитывает специфику форматирования и представления данных и не определяет дополнительные уровни между прикладным и транспортным уровнями, как в модели OSI (уровни представления и сеанса). Согласно модели TCP / IP, такие функции являются областью библиотек и интерфейсов прикладного программирования . Прикладной уровень в модели TCP / IP часто сравнивают с комбинацией пятого (сеансовый), шестого (представление) и седьмого (приложения) уровней модели OSI.

Протоколы прикладного уровня часто связаны с конкретными клиент-серверными приложениями, а общие службы имеют хорошо известные номера портов, зарезервированные Internet Assigned Numbers Authority (IANA). Например, протокол передачи гипертекста использует порт сервера 80, а Telnet использует порт сервера 23. Клиенты, подключающиеся к службе, обычно используют эфемерные порты , т. Е. Номера портов , назначаемые только на время транзакции случайным образом или из определенного диапазона, настроенного в заявление.

На уровне приложений модель TCP / IP различает пользовательские протоколы и протоколы поддержки . Протоколы поддержки предоставляют услуги системе сетевой инфраструктуры. Пользовательские протоколы используются для реальных пользовательских приложений. Например, FTP — это протокол пользователя, а DNS — протокол поддержки.

Хотя приложения обычно осведомлены о ключевых качествах соединения транспортного уровня, таких как IP-адреса конечных точек и номера портов, протоколы прикладного уровня обычно рассматривают протоколы транспортного уровня (и более низких уровней) как черные ящики, которые обеспечивают стабильное сетевое соединение, через которое осуществляется обмен данными. . Транспортный уровень и уровни нижнего уровня не заботятся о специфике протоколов прикладного уровня. Маршрутизаторы и коммутаторы обычно не проверяют инкапсулированный трафик, а просто предоставляют для него канал. Однако некоторые брандмауэры и приложения для регулирования полосы пропускания используют глубокую проверку пакетов для интерпретации данных приложения. Примером может служить протокол резервирования ресурсов (RSVP). Иногда необходимо учитывать полезную нагрузку приложения.

Основные протоколы интернета

Как я уже сказал. в основе работы сети лежит использование нескольких протоколов, которые работают один поверх другого. Давайте рассмотрим основные сетевые протоколы интернет, которые вам будут часто встречаться, и попытаемся понять разницу между ними.

  • MAC или (Media Access Control) – это протокол низкого уровня, который используется для идентификации устройств в локальной сети. У каждого устройства, подключенного к сети есть уникальный MAC адрес, заданный производителем. В локальных сетях, а все данные выходят из локальной сети и попадают в локальную сеть перед тем, как попасть к получателю, используются физические MAC адреса для обозначения устройств. Это один из немногих протоколов уровня соединения, с которым довольно часто приходится сталкиваться.
  • IP ( Internet Protocol) – расположен уровнем выше, за MAC. Он отвечает за определение IP адресов, которые будут уникальными для каждого устройства и позволяют компьютерам находить друг друга в сети. Он относится к сетевому уровню модели TCP/IP. Сети могут быть связанны друг с другом в сложные структуры, с помощью этого протокола компьютеры могут определить несколько возможных путей к целевому устройству, причем во время работы эти пути могут меняться. Есть несколько реализаций протокола, но наиболее популярной на сегодняшний день является IPv4 и IPv6.
  • ICMP (Internet control message protocol) – используется для обмена сообщениями между устройствами. Это могут быть сообщения об ошибках или информационные сообщения, но он не предназначен для передачи данных. Такие пакеты используются в таких диагностических инструментах, как ping и traceroute. Этот протокол находится выше протокола IP;
  • TCP (Transmission control protocol) – это еще один основной сетевой протокол, который находится на том же уровне, что и ICMP. Его задача – управление передачей данных. Сети ненадежны. Из-за большого количества путей пакеты могут приходить не в том порядке или даже теряться. TCP гарантирует, что пакеты будут приняты в правильном порядке, а также позволяет исправить ошибки передачи пакетов. Информация приводится к правильному порядку, а уже затем передается приложению. Перед передачей данных создается соединение с помощью так называемого алгоритма тройного рукопожатия. Он предусматривает отправку запроса и подтверждение открытия соединения двумя компьютерами. Множество приложений используют TCP, это SSH, WWW, FTP и многие другие.
  • UDP (user datagram protocol) – это популярный протокол, похожий на TCP, который тоже работает на транспортном уровне. Отличие между ними в том, что здесь используется ненадежная передача данных. Данные не проверяются при получении, это может выглядеть плохой идеей, но во многих случаях этого вполне достаточно. Поскольку нужно отправлять меньше пакетов, UDP работает быстрее, чем TCP. Поскольку соединение устанавливать не нужно, то этот протокол может использоваться для отправки пакетов сразу на несколько машин или IP телефонии.
  • HTTP (hypertext transfer protocol) – это протокол уровня приложения, который лежит в основе работы всех сайтов интернета. HTTP позволяет запрашивать определенные ресурсы у удаленной системы, например, веб страницы, и файлы;
  • FTP (file transfer protocol) – это протокол передачи файлов. Он работает на уровне приложений и обеспечивает передачу файла от одного компьютера к другому. FTP – не безопасный, поэтому не рекомендуется его применять для личных данных;
  • DNS (domain name system) – протокол того же уровня, используемый для преобразования понятных и легко читаемых адресов в сложные ip адреса, которые трудно запомнить и наоборот. Благодаря ему мы можем получить доступ к сайту по его доменному имени;
  • SSH (secure shell) – протокол уровня приложений, реализованный для обеспечения удаленного управления системой по защищенному каналу. Многие дополнительные технологии используют этот протокол для своей работы.

Есть еще очень много других протоколов, но мы рассмотрели только сетевые протоколы, которые больше всего важны. Это даст вам общие понятия того, как работает сеть и интернет в целом.

Интернет-уровень

Internetworking требует отправки данных из исходной сети в сеть назначения. Этот процесс называется маршрутизацией и поддерживается адресацией хоста и идентификацией с использованием иерархической системы IP-адресации . Интернет слой обеспечивает ненадежные датаграммы средство передачи между узлами , расположенных на потенциально различные IP — сетях посредством пересылки дейтаграммы соответствующего маршрутизатора следующего перехода для дальнейшей ретрансляции к месту назначения. Интернет-уровень отвечает за отправку пакетов по потенциально нескольким сетям. Благодаря этой функциональности уровень Интернета делает возможным межсетевое взаимодействие, взаимодействие различных IP-сетей и, по сути, устанавливает Интернет.

Интернет-уровень не делает различий между различными протоколами транспортного уровня. IP передает данные для множества различных протоколов верхнего уровня . Каждый из этих протоколов идентифицируется уникальным номером протокола : например, Internet Control Message Protocol (ICMP) и Internet Group Management Protocol (IGMP) — это протоколы 1 и 2, соответственно.

Интернет-протокол является основным компонентом Интернет-уровня, и он определяет две системы адресации для идентификации сетевых узлов и определения их местоположения в сети. Исходная адресная система ARPANET и ее преемника, Интернет, — это Интернет-протокол версии 4 (IPv4). Он использует 32-битный IP-адрес и поэтому способен идентифицировать примерно четыре миллиарда хостов. Это ограничение было снято в 1998 году путем стандартизации протокола Интернета версии 6 (IPv6), в котором используются 128-битные адреса. Производственные реализации IPv6 появились примерно в 2006 году.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector